Learn about Data Mining Standard Processes, Survival Analysis, Clustering Analysis, Various algorithms and much more.
Platform: Udemy
Status: Available
Duration: 5.5 Hours
Price: $19.99 $0.00
Note: Udemy FREE coupon codes are valid for maximum 3 days only. Look for "Get Coupon" orange button at the end of Description. This post may have affiliate link & we may get small commission if you make a purchase.
What you'll learn
- Get started with Data Mining.
- Learn about different Data Mining Standard Processes.
- Learn the concept of Survival Analysis.
- Learn about the concept of Cox Hazards Regression.
- Learn about Clustering Analysis.
- Learn about the Dimensionality reduction.
- Learn about the concept of Association Rule Learning.
- Learn about the Predictive Modelling.
- Basic knowledge required in Statistics.
- Basic knowledge required for Python.
Data mining means mining the data. It is defined as finding hidden insights(information) from the database and extract patterns from the data.
Data mining is an automated process that consists of searching large datasets for patterns humans might not spot.
In this course, you will get advanced knowledge on Data Mining.
This course begins by providing you the complete knowledge about the introduction of Data Mining.
This course is a complete package for everyone wanting to pursue a career in data mining.
In this course, you will cover the following topics:-
Data Mining Standard Processes.
KDD- Knowledge Discovery in Databases.
Introduction to SEMMA.
Introduction to CRISP- DM.
Introduction to TDSP- Team Data Science Process.
Survival Analysis.
Introduction to Survival Analysis.
Kaplan Meyer Estimator introduction.
Log Rank Test introduction.
Cox Hazards Regression.
Clustering Analysis.
KMeans clustering.
Gaussian Mixture Model.
Dimensionality reduction.
Introduction to Data Reduction.
PCA - Principal Component Analysis.
T-SNE.
LDA - Linear Discriminant Analysis.
Association Rule Learning.
Transaction List.
Encoding Transactions.
Aprior Algorithm and Visualization.
Tree based models.
Decision Trees.
Attribute selection method- Gini Index and Entropy.
Concept of Bagging.
Random Forest.
Boosting Algorithm.
Introduction to Adaboost and Gradient Boosting.
Introduction to XGBoost.
Model Explanationability.
Introduction to SHAP.
Local and Global Interpretability.
Introduction to LIME.
This course is a complete package.
Lots and lots of quizzes and exercises are waiting for you.
You will also have access to all the resources used in this course.
Enroll now and become an expert in Data Mining.
Who this course is for:
- People who are quite beginners.
- Anyone who is curious to learn Data Mining.
- Anyone who is interested in learning Data Mining algorithms.
- Data Scientists.
- Machine learning experts.